WIND PARTNERS

UBS Utilities Conference

Presentation by Peter O'Connell

Chief Executive Officer, Babcock & Brown Wind Partners

Babcock & Brown Wind Partners ("BBWP")

Babcock & Brown Wind Partners ("BBWP")

- First listed wind investment globally ٠
- **Stapled security** ۲
- Managed by Babcock & Brown ٠
- Issued at \$1.40, listed on 28 October ۲
- Strong increase in security price since listing (> 20% increase) ٠
- Market capitalisation of ~ \$850 million ٠
- 15 assets across 3 continents

BABCOCK & BROW

WIND PARTNER

Quality portfolio of globally diversified assets

- Initial portfolio of investments in 15 wind farms with total gross installed capacity of 671.6MW
- Average annual production of 2,181GWh
- Forecast to generate EBITDA after associates² of \$76 million in FY06 (pro forma) and \$80 million in FY07

¹ Based on long term mean energy production estimates by expert advisers.

² Forecast EBITDA after share of net profit of equity accounted investments.

Approximately \$250¹ million reserved for investment opportunities

	US Framework	Spanish Framework	German Framework	LB2 Acquisition
	Agreement	Agreement	Agreement	Agreement
Details	• Agreement to acquire further Class B membership interests in 4 wind farms in the US with estimated total gross capacity of 216MW	• Rights and obligations to acquire wind farms with capacity of up to 450MW in Spain over the next 3 years	• Rights of first refusal in relation to the acquisition of wind farms in Germany before the end of 2006	• Vendors of company obliged to develop a wind farm with long term mean net electricity output of 501GWh p.a.

- Three Framework Agreements and LB2 Acquisition Agreement are identifiable growth opportunities secured from Babcock & Brown
- These opportunities did not form part of the Directors' forecasts

¹Assumes 469 million Stapled Securities issued at Offer Price of \$1.40 per Stapled Security pursuant to the Offer

BBWP: Initial portfolio summary

Notes:

¹ Percentages for North America constitute percentage ownership of Class B stock of project entity only

² Wind farms are not acquired by BBWP until commencement of operations and permits and approvals obtained

³ Under construction

⁴ Grid can currently only take capacity of 10MW

Agenda

Industry Prospects

Growing global wind energy industry

on which industry forecasts are based

BABCOCK BBROWN WIND PARTNERS

Growth driven by the desire to reduce greenhouse gas emissions . . .

Types of regulatory regimes

- Fixed price system eg. Denmark, Germany and Spain
- Fixed quantity system eg. UK and Australia
- Production tax credits USA

Broader initiatives

- Kyoto Protocol: requires a 5.2% reduction in emissions by 2012 (compared to 1990)
- Emission Trading Scheme: allows for carbon credits to be traded internationally, commenced operation on 1 January 2005

... and dependence on non-renewables combined with significant technology improvements

Efficiencies in production have reduced cost of wind energy generation by 80% in the last 25 years

Source: diagram not used in offer document instead diagram has been adopted from materials of the German Wind Energy Association

- The desire to reduce the dependence on, and depletion of, non-renewable resources, together with many countries seeking to diversify the sources of their energy supply are key drivers of future growth
- Security of energy supply is also becoming an increasingly significant issue for many countries, particularly with the level and volatility of fossil fuel prices having increased considerably over the past three years
- Over the last 25 years, the cost of producing electricity from wind energy has reduced by 80% (Industry information as per BTM Consult report.)
- Cost reduction is expected to continue at a rate of 3% to 5% p.a. on average (Refer to Section 4.5 of the BBWP Offer Document for summary of assumptions on which industry forecasts are based)

Key markets are Europe and North America

15 November 2005

11

Cost of wind projects reported in 2004

- A limited selection from the *WINDPOWER MONTHLY* database
- Shows The Global nature of wind energy investment

LOCATION	No. OF MACHINES	UNIT MW	CAPACITY MW	PROJECT PRICE (MILLION)	EURO/KW
Australia, Mount Millar	35	2.0	70.0	A\$130.0	1077
Canada, Alberta	20	1.5	30.0	C\$48.0	1008
China, Fujian	-	-	100.0	\$94.2	707
Finland, Raache	5	2.3	11.5	€13.0	1130
France, Picardie	6	2.0	12.0	€12.8	1067
India, Jaisalmer	-	-	25.0	\$22.0	660
Ireland, Donegal	38	Mixed	72.0	€20.0	1111
Jamaica, Wigton	23	0.9	20.7	\$24.0	870
Japan, Nagaski	15	1.0	15.0	\$27.0	1350
Morocco, Tangier	-	-	140.0	€167.0	1193
Spain, three Gamesa projects	-	-	132.0	€115.0	871
UK, Scotland	27	1.75	74.0	£60.0	1176

Global Trends: Escalating gas prices alter competitive position of Power Generation Technologies.

- Coal is now the competitor wind has to beat in most geographical areas.
- Escalating fuel costs provides no risk to wind power and are advantageous for demand. Price stability is important.
- On 1 Jan 2006 the EU Emissions Trading Shares kicks off.
 Polluters must buy permits if they emit more CO² than allowed: EU expects CO² to trade at €8/tonne pushing up new coal generation costs by €8/MWH and new gas by €32/MWH.

Wind Power: Global development trends.

- Trend to larger wind turbines shows no sign of slackening:
 - Benefits include reduced project costs from savings in foundations, transport and electrical connections.

 Trend to larger wind farms likely to be more pronounced: Saving in construction, project management and grid connection costs.

Source: Windpower Monthly, January 2005

The real world: Coal, gas and wind costs are from actual projects in 2004, while nuclear prices are industry estimates. Track the €50/MWh line and it becomes clear that low-cost wind plant can be competitive with the thermal technologies at all but the lowest wind speeds. With good winds, more expensive wind projects on land can hold their own too. Only the very cheapest offshore wind plant get under the wire, and are competitive as yet

Wind assessment and energy prediction

Wind assessment and energy prediction process

A typical wind assessment and energy prediction process involves determining:

- Wind speed at wind turbine hub height: establishes the long-term (typically 10 years) wind characteristics at particular point/s on the proposed site
- Gross energy output of the wind farm: optimises the wind characteristics with the site topography and surface cover, turbine profile, wind farm layout, turbulence and air density
- Net energy output of the wind farm: takes account of a number of wind farm specific loss factors, including turbine availability, electrical efficiency and interference between turbines

Certainty of predicted energy production

- Some uncertainty due to the natural variability of certain parameters
- "Probability of Exceedence" means the probability that a given level of energy production will be exceeded in any year
 - for example, P90 means that there is a 90% probability that a given level of energy production will be exceeded in any year
 - P50 represents the best estimate of energy production in any year and may be referred to as the "long term mean energy production"

Global portfolio effect and sensitivity analysis

Sensitivity analysis

(\$'000)	Impact on 2006		Impact on 2007	
	EBITDA	NPAT	EBITDA	NPAT
P75 (Total net output production = 2,056.6GWh)	(4,627)	(3,315)	(6,948)	(5,148)
P90 (Total net output production = 1,944.3GWh)	(8,883)	(6,495)	(12,585)	(9,436)
Low market price scenario for Olivo Portfolio	(4,085)	(2,930)	(4,999)	(3,753)
+ 1% in interest rates	8	1,166	45	1,981
- 1% in interest rates	(8)	(1,154)	(44)	(1,934)
+ 5% change in A\$/ US\$ rate	(98)	7	(181)	17
- 5% change in A\$/ US\$ rate	108	(9)	200	(18)
+ 5% change in A\$/ € rate	(1,729)	(362)	(2,180)	(486)
- 5% change in A\$/ € rate	1,910	399	2,410	538

- Caution should be taken in drawing conclusions from the P75 and P90 scenarios above because it is unlikely that each individual wind farm in the Initial Portfolio will achieve the P75 or the P90 level simultaneously
- Hence the "portfolio effect" may provide the following benefits (in terms of output generated compared to the sum of the same level for the individual wind farm projects in the Initial Portfolio):
 - At the P75 level: the Initial Portfolio is expected to generate 2.9% more than the sum of the individual levels
 - At the P90 level: the Initial Portfolio is expected to generate 5.9% more than the sum of the individual levels

